89,631 research outputs found

    Are you a researcher as well as a medical illustrator?

    Get PDF
    When we list the areas of practice for medical illustrators we always include research, but how involved in research are we? The aim of this activity is to encourage your professional development not just as a medical illustrator but your involvement with research whether that is undertaking your own research, undertaking evidence based practice (1) , working as part of a research team, advising researchers on the value of medical illustration or supporting a student undertaking a research project for their degree or post-graduate qualification

    An improved soft X-ray photoionization detector

    Get PDF
    Photoionization detector with an alumina shell, a beryllium foil window, and a xenon gas fill measures small incident photon fluxes from soft X rays. It has high spectral selectivity and quantum efficiencies, and a long shelf life. It minimizes electrical leakage and recontamination, and will hold a high vacuum

    Automatic balancing device Patent

    Get PDF
    Automatic balancing device for use on frictionless supported attitude-controlled test platform

    Chiral extrapolations for nucleon magnetic moments

    Get PDF
    Lattice QCD simulations have made significant progress in the calculation of nucleon electromagnetic form factors in the chiral regime in recent years. With simulation results achieving pion masses of order ~180 MeV, there is an apparent challenge as to how the physical regime is approached. By using contemporary methods in chiral effective field theory, both the quark-mass and finite-volume dependence of the isovector nucleon magnetic moment are carefully examined. The extrapolation to the physical point yields a result that is compatible with experiment, albeit with a combined statistical and systematic uncertainty of 10%. The extrapolation shows a strong finite-volume dependence; lattice sizes of L > 5 fm must be used to simulate results within 2% of the infinite-volume result for the magnetic moment at the physical pion mass.Comment: 7 pages, 12 figures, 1 tabl

    Power Counting Regime of Chiral Effective Field Theory and Beyond

    Get PDF
    Chiral effective field theory complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of chiral effective field theory, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may be used in a nonperturbative manner to describe lattice simulation results outside of the PCR. Positive results that improve on the current optimistic application of chiral perturbation theory beyond the PCR are reported.Comment: 18 pages, 55 figure
    • …
    corecore